If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2-24t-128=0
a = 5; b = -24; c = -128;
Δ = b2-4ac
Δ = -242-4·5·(-128)
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-56}{2*5}=\frac{-32}{10} =-3+1/5 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+56}{2*5}=\frac{80}{10} =8 $
| a=7-a | | 13/16=x/4 | | 2•x=12 | | x+0.06x=1095 | | 2r–³=-16 | | 3×-7=x+5 | | (3c-2)2=10 | | 7x=x2-1 | | 3(4h+1)-7h=-7 | | 2x+x-10=20 | | )5x+1=31 | | |1/2x-6|=12 | | 3(x+2)*6=288 | | 8-1y=5 | | 1/3X+1/6y=3 | | 2a2-5a-12=0 | | 7=56-7y | | 8x-3x+10=25 | | y=150+0.6y+2000 | | X2+144=24x | | 15x-17+48=180 | | 3x^2+8x−35=0 | | 3x+21=3(x=7) | | a=2(.25)/2^2 | | Y2+8y=20 | | 4(2x-1)=-18 | | 3(x+2)*6=144 | | 7=31-6y | | 7=31=6y | | 128=8^(x-2) | | 0=3x^2+2x+2 | | F(16)=-4x+9 |